Floods are among the most devastating natural hazards in the world, causing the largest percentage of deaths and property damage. The impact of floods can be mitigated with an adequate knowledge of the territory, which makes it possible to better organize prevention plans with an appropriate analysis of the risk areas, which allows the management of relief efforts quickly and adequately. This work presents a methodology for mapping and monitoring the areas affected by floods and landslides by remote sensing: the correct representation and full interpretation of the territory matrix are essential for quality and sustainability design. In this paper, we used tools and technology that allow us to analyze and visualize the landscape evolution. The calibration of the method was performed on the events that took place in Calabria, in Southern Italy, on 12 August 2015. The proposed methodology concerned the planning of acquisition flights, the selection and setting of the sensors used, and the processing and post-processing of the data collected through the application of algorithms used for data manipulation and interpretation. The process of recognizing the areas with deposits of debris through the spectral signature was carried out using similarity criteria relating to hyperspectral data. The results obtained recommend the adoption of this methodology to deal with emergencies due to flood events.

New Digital Field of Drawing and Survey for the Automatic Identification of Debris Accumulation in Flooded Areas

PARENTE R;
2022-01-01

Abstract

Floods are among the most devastating natural hazards in the world, causing the largest percentage of deaths and property damage. The impact of floods can be mitigated with an adequate knowledge of the territory, which makes it possible to better organize prevention plans with an appropriate analysis of the risk areas, which allows the management of relief efforts quickly and adequately. This work presents a methodology for mapping and monitoring the areas affected by floods and landslides by remote sensing: the correct representation and full interpretation of the territory matrix are essential for quality and sustainability design. In this paper, we used tools and technology that allow us to analyze and visualize the landscape evolution. The calibration of the method was performed on the events that took place in Calabria, in Southern Italy, on 12 August 2015. The proposed methodology concerned the planning of acquisition flights, the selection and setting of the sensors used, and the processing and post-processing of the data collected through the application of algorithms used for data manipulation and interpretation. The process of recognizing the areas with deposits of debris through the spectral signature was carried out using similarity criteria relating to hyperspectral data. The results obtained recommend the adoption of this methodology to deal with emergencies due to flood events.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/8270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact