Weighing the topological domain over which data can be represented and analysed is a key strategy in many signal processing and machine learning applications, enabling the extraction and exploitation of meaningful data features and their (higher order) relationships. Our goal in this paper is to present topological signal processing tools for weighted simplicial complexes. Specifically, relying on the weighted Hodge Laplacian theory, we propose efficient strategies to jointly learn the weights of the complex and the filters for the solenoidal, irrotational and harmonic components of the signals defined over the complex. We numerically assess the effectiveness of the proposed procedures.

Topological signal processing over weighted simplicial complexes

Sardellitti, Stefania;
2023-01-01

Abstract

Weighing the topological domain over which data can be represented and analysed is a key strategy in many signal processing and machine learning applications, enabling the extraction and exploitation of meaningful data features and their (higher order) relationships. Our goal in this paper is to present topological signal processing tools for weighted simplicial complexes. Specifically, relying on the weighted Hodge Laplacian theory, we propose efficient strategies to jointly learn the weights of the complex and the filters for the solenoidal, irrotational and harmonic components of the signals defined over the complex. We numerically assess the effectiveness of the proposed procedures.
2023
978-1-7281-6327-7
topological signal processing
weighted simplicial complexes
algebraic topology
metric learning
flow estimation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/7711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact