We study distributed processing of subspace-constrained signals in multi-agent networks with sparse connectivity. We introduce the first optimization framework based on distributed subspace projections, aimed at minimizing a network cost function depending on the specific processing task, while imposing subspace constraints on the final solution. The proposed method hinges on (sub)gradient techniques while leveraging distributed projections as a mechanism to enforce subspace constraints in a cooperative and distributed fashion. Asymptotic convergence to optimal solutions of the problem is established under different assumptions (e.g., nondifferentiability, nonconvexity, etc.) on the objective function. Finally, numerical tests assess the performance of the proposed distributed strategy.

Distributed signal recovery based on in-network subspace projections

Sardellitti S.
2019-01-01

Abstract

We study distributed processing of subspace-constrained signals in multi-agent networks with sparse connectivity. We introduce the first optimization framework based on distributed subspace projections, aimed at minimizing a network cost function depending on the specific processing task, while imposing subspace constraints on the final solution. The proposed method hinges on (sub)gradient techniques while leveraging distributed projections as a mechanism to enforce subspace constraints in a cooperative and distributed fashion. Asymptotic convergence to optimal solutions of the problem is established under different assumptions (e.g., nondifferentiability, nonconvexity, etc.) on the objective function. Finally, numerical tests assess the performance of the proposed distributed strategy.
2019
978-1-4799-8131-1
convergence analysis
distributed optimization
networks
signal processing
subspace projections
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/7685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact