The aim of this paper is to propose a least mean squares (LMS) strategy for adaptive estimation of signals defined over graphs. Assuming the graph signal to be band-limited, over a known bandwidth, the method enables reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of observations sampled over a subset of vertices. A detailed mean square analysis provides the performance of the proposed method, and leads to several insights for designing useful sampling strategies for graph signals. Numerical results validate our theoretical findings, and illustrate the advantages achieved by the proposed strategy for online estimation of band-limited graph signals. © 2016 IEEE.

LMS estimation of signals defined over graphs

SARDELLITTI, Stefania
2016-01-01

Abstract

The aim of this paper is to propose a least mean squares (LMS) strategy for adaptive estimation of signals defined over graphs. Assuming the graph signal to be band-limited, over a known bandwidth, the method enables reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of observations sampled over a subset of vertices. A detailed mean square analysis provides the performance of the proposed method, and leads to several insights for designing useful sampling strategies for graph signals. Numerical results validate our theoretical findings, and illustrate the advantages achieved by the proposed strategy for online estimation of band-limited graph signals. © 2016 IEEE.
2016
9780992862657
Graph signal processing
Least mean squares estimation
Sampling on graphs
Signal Processing
Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/7681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact