The aim of this paper is to propose a least mean squares (LMS) strategy for adaptive estimation of signals defined over graphs. Assuming the graph signal to be band-limited, over a known bandwidth, the method enables reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of observations over a subset of vertices. A detailed mean square analysis provides the performance of the proposed method, and leads to several insights for designing useful sampling strategies for graph signals. Numerical results validate our theoretical findings, and illustrate the performance of the proposed method. Furthermore, to cope with the case where the bandwidth is not known beforehand, we propose a method that performs a sparse online estimation of the signal support in the (graph) frequency domain, which enables online adaptation of the graph sampling strategy. Finally, we apply the proposed method to build the power spatial density cartography of a given operational region in a cognitive network environment.

Adaptive Least Mean Squares Estimation of Graph Signals

SARDELLITTI, Stefania
2016-01-01

Abstract

The aim of this paper is to propose a least mean squares (LMS) strategy for adaptive estimation of signals defined over graphs. Assuming the graph signal to be band-limited, over a known bandwidth, the method enables reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of observations over a subset of vertices. A detailed mean square analysis provides the performance of the proposed method, and leads to several insights for designing useful sampling strategies for graph signals. Numerical results validate our theoretical findings, and illustrate the performance of the proposed method. Furthermore, to cope with the case where the bandwidth is not known beforehand, we propose a method that performs a sparse online estimation of the signal support in the (graph) frequency domain, which enables online adaptation of the graph sampling strategy. Finally, we apply the proposed method to build the power spatial density cartography of a given operational region in a cognitive network environment.
2016
adaptation
learning
graphs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/7271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
social impact