Femtocell networks offer a series of advantages with respect to conventional cellular networks. However, a potential massive deployment of femto-access points (FAPs) poses a big challenge in terms of interference management, which requires proper radio resource allocation techniques. In this article, we propose alternative optimal power/bit allocation strategies over a time-frequency frame based on a statistical modeling of the interference activity. Given the lack of knowledge of the interference activity, we assume a Bayesian approach that provides the optimal allocation, conditioned to periodic spectrum sensing, and estimation of the interference activity statistical parameters. We consider first a single FAP accessing the radio channel in the presence of a dynamical interference environment. Then, we extend the formulation to a multi-FAP scenario, where nearby FAP’s react to the strategies of the other FAP’s, still within a dynamical interference scenario. The multi-user case is first approached using a strategic non-cooperative game formulation. Then, we propose a coordination game based on the introduction of a pricing mechanism that exploits the backhaul link to enable the exchange of parameters (prices) among FAP’s
Optimal resource allocation in femtocell networks based on Markov modeling of interference activity
Sardellitti S;
2012-01-01
Abstract
Femtocell networks offer a series of advantages with respect to conventional cellular networks. However, a potential massive deployment of femto-access points (FAPs) poses a big challenge in terms of interference management, which requires proper radio resource allocation techniques. In this article, we propose alternative optimal power/bit allocation strategies over a time-frequency frame based on a statistical modeling of the interference activity. Given the lack of knowledge of the interference activity, we assume a Bayesian approach that provides the optimal allocation, conditioned to periodic spectrum sensing, and estimation of the interference activity statistical parameters. We consider first a single FAP accessing the radio channel in the presence of a dynamical interference environment. Then, we extend the formulation to a multi-FAP scenario, where nearby FAP’s react to the strategies of the other FAP’s, still within a dynamical interference scenario. The multi-user case is first approached using a strategic non-cooperative game formulation. Then, we propose a coordination game based on the introduction of a pricing mechanism that exploits the backhaul link to enable the exchange of parameters (prices) among FAP’sI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.