A novel all-optical stealth and secured transmission is proposed and demonstrated. Spectral replicas of the covert signal are carried by multiple tones of a gain switched optical frequency comb, optically coded with spectral phase mask, and concealed below EDFA’s noise. The secured signal’s spectrum is spread far beyond the bandwidth of a coherent receiver, thus forcing real time all-optical processing. An unauthorized user, who does not possess knowledge on the phase mask, can only obtain a noisy and distorted signal, that cannot be improved by post-processing. On the other hand, the authorized user decodes the signal using an inverse spectral phase mask and achieves a substantial optical processing gain via multi-homodyne coherent detection. A transmission of 20 Gbps under negative −7.5 dB OSNR is demonstrated here, yielding error-free detection by the eligible user.

Stealth and secured optical coherent transmission using a gain switched frequency comb and multi-homodyne coherent detection

Poti' L;
2021-01-01

Abstract

A novel all-optical stealth and secured transmission is proposed and demonstrated. Spectral replicas of the covert signal are carried by multiple tones of a gain switched optical frequency comb, optically coded with spectral phase mask, and concealed below EDFA’s noise. The secured signal’s spectrum is spread far beyond the bandwidth of a coherent receiver, thus forcing real time all-optical processing. An unauthorized user, who does not possess knowledge on the phase mask, can only obtain a noisy and distorted signal, that cannot be improved by post-processing. On the other hand, the authorized user decodes the signal using an inverse spectral phase mask and achieves a substantial optical processing gain via multi-homodyne coherent detection. A transmission of 20 Gbps under negative −7.5 dB OSNR is demonstrated here, yielding error-free detection by the eligible user.
2021
Engineering controlled terms: Light transmission; Signal receivers
Engineering uncontrolled terms: All optical; Coherent detection; Coherent transmission; Frequency combs; Gain-switched; Homodynes; Optical-; Phase masks; Spectral phasis; Switched frequencies
Engineering main heading: Erbium doped fiber amplifiers
File in questo prodotto:
File Dimensione Formato  
Potì_oe-29-24-40462_2021.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.91 MB
Formato Adobe PDF
4.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
social impact