Rapid decarbonization relies on knowing which structural and energy factors affect national carbon dioxide emissions. Much of the literature leans on linear and additive assumptions, which may gloss over curvature and interactions in this energy–emissions link. Unlike previous studies, we take a different approach. Using a panel of 80 high- and upper-middle-income countries from 2011 to 2020, we model emissions as a function of fossil fuel energy consumption, methane, the food production index, renewable electricity output, gross domestic product (GDP), and trade measured as trade over GDP. Our contribution is twofold. First, we evaluate how different modeling strategies, from a traditional Generalized Linear Model to more flexible approaches such as Support Vector Machine regression and Random Forest (RF), influence the identification of emission drivers. Second, we use Double Machine Learning (DML) to estimate the incremental effect of fossil fuel consumption while controlling for other variables, offering a more careful interpretation of its likely causal role. Across models, a clear pattern emerges: GDP dominates; fossil fuel energy consumption and methane follow. Renewable electricity output and trade contribute, but to a moderate degree. The food production index adds little in this aggregate, cross-country setting. To probe the mechanism rather than the prediction, we estimate the incremental role of fossil fuel energy consumption using DML with RF nuisance functions. The partial effect remains positive after conditioning on the other covariates. Taken together, the results suggest that economic scale and the fuel mix are the primary levers for near-term emissions profiles, while renewables and trade matter, just less than is often assumed and in ways that may depend on context.

Uncovering CO2 Drivers with Machine Learning in High- and Upper-Middle-Income Countries

Gattone T
2025-01-01

Abstract

Rapid decarbonization relies on knowing which structural and energy factors affect national carbon dioxide emissions. Much of the literature leans on linear and additive assumptions, which may gloss over curvature and interactions in this energy–emissions link. Unlike previous studies, we take a different approach. Using a panel of 80 high- and upper-middle-income countries from 2011 to 2020, we model emissions as a function of fossil fuel energy consumption, methane, the food production index, renewable electricity output, gross domestic product (GDP), and trade measured as trade over GDP. Our contribution is twofold. First, we evaluate how different modeling strategies, from a traditional Generalized Linear Model to more flexible approaches such as Support Vector Machine regression and Random Forest (RF), influence the identification of emission drivers. Second, we use Double Machine Learning (DML) to estimate the incremental effect of fossil fuel consumption while controlling for other variables, offering a more careful interpretation of its likely causal role. Across models, a clear pattern emerges: GDP dominates; fossil fuel energy consumption and methane follow. Renewable electricity output and trade contribute, but to a moderate degree. The food production index adds little in this aggregate, cross-country setting. To probe the mechanism rather than the prediction, we estimate the incremental role of fossil fuel energy consumption using DML with RF nuisance functions. The partial effect remains positive after conditioning on the other covariates. Taken together, the results suggest that economic scale and the fuel mix are the primary levers for near-term emissions profiles, while renewables and trade matter, just less than is often assumed and in ways that may depend on context.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/37044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact