Recent advances in Information Retrieval have leveraged high-dimensional embedding spaces to improve the retrieval of relevant documents. Moreover, the Manifold Clustering Hypothesis suggests that despite these high-dimensional representations, documents relevant to a query reside on a lower-dimensional, query-dependent manifold. While this hypothesis has inspired new retrieval methods, existing approaches still face challenges in effectively separating non-relevant information from relevant signals. We propose a novel methodology that addresses these limitations by leveraging information from both relevant and non-relevant documents. Our method, Eclipse, computes a centroid based on irrelevant documents as a reference to estimate noisy dimensions present in relevant ones, enhancing retrieval performance. Extensive experiments on three in-domain and one out-of-domain benchmarks demonstrate an average improvement of up to 21.03% (resp. 22.88%) in mAP(AP) and 12.04% (resp. 14.18%) in nDCG@10 w.r.t. the DIME-based baseline (resp. the baseline using all dimensions). Our results pave the way for more robust, pseudo-irrelevance-based retrieval systems in future IR research.
Eclipse: Contrastive Dimension Importance Estimation with Pseudo-Irrelevance Feedback for Dense Retrieval
Trappolini G.;
2025-01-01
Abstract
Recent advances in Information Retrieval have leveraged high-dimensional embedding spaces to improve the retrieval of relevant documents. Moreover, the Manifold Clustering Hypothesis suggests that despite these high-dimensional representations, documents relevant to a query reside on a lower-dimensional, query-dependent manifold. While this hypothesis has inspired new retrieval methods, existing approaches still face challenges in effectively separating non-relevant information from relevant signals. We propose a novel methodology that addresses these limitations by leveraging information from both relevant and non-relevant documents. Our method, Eclipse, computes a centroid based on irrelevant documents as a reference to estimate noisy dimensions present in relevant ones, enhancing retrieval performance. Extensive experiments on three in-domain and one out-of-domain benchmarks demonstrate an average improvement of up to 21.03% (resp. 22.88%) in mAP(AP) and 12.04% (resp. 14.18%) in nDCG@10 w.r.t. the DIME-based baseline (resp. the baseline using all dimensions). Our results pave the way for more robust, pseudo-irrelevance-based retrieval systems in future IR research.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

