This study investigates the influence of different surface treatments (namely, mechanical abrasion and solvent cleaning with isopropyl alcohol and acetone) on the adhesive bonding performance of polylactic acid (PLA) substrates produced by Fused Deposition Modeling (FDM). Pull-off tests revealed that the isopropanol-cleaned specimens achieved the highest bond strength, with an average pull-off value exceeding 8.5 MPa, compared to approximately 5.6 MPa for untreated PLA. Conversely, acetone cleaning resulted in the lowest performance (about 3.5 MPa), while mechanical abrasion yielded intermediate values of about 6 MPa. FTIR analysis confirmed that no chemical reactions occurred, although acetone and abrasion induced significant physical surface changes, unlike isopropanol, which acted as an effective cleaning agent. These findings demonstrate that surface cleanliness plays a dominant role over morphological alterations in enhancing the adhesion of PLA-based 3D-printed joints.

Influence of Surface Treatments on the Pull-Off Performance of Adhesively Bonded Polylactic Acid (PLA) Specimens Manufactured by Fused Deposition Modeling (FDM)

Parodo, Gianluca
;
2025-01-01

Abstract

This study investigates the influence of different surface treatments (namely, mechanical abrasion and solvent cleaning with isopropyl alcohol and acetone) on the adhesive bonding performance of polylactic acid (PLA) substrates produced by Fused Deposition Modeling (FDM). Pull-off tests revealed that the isopropanol-cleaned specimens achieved the highest bond strength, with an average pull-off value exceeding 8.5 MPa, compared to approximately 5.6 MPa for untreated PLA. Conversely, acetone cleaning resulted in the lowest performance (about 3.5 MPa), while mechanical abrasion yielded intermediate values of about 6 MPa. FTIR analysis confirmed that no chemical reactions occurred, although acetone and abrasion induced significant physical surface changes, unlike isopropanol, which acted as an effective cleaning agent. These findings demonstrate that surface cleanliness plays a dominant role over morphological alterations in enhancing the adhesion of PLA-based 3D-printed joints.
2025
PLA
adhesive bonding
epoxy adhesive
experimental characterization
pull-off test
surface treatment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/35285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact