Featured Application: This research enables AI-driven APS systems in manufacturing industries, especially fashion, enhancing real-time scheduling, optimizing resource use, and aligning production with dynamic market demands. It supports sustainable, agile manufacturing aligned with the Industry 5.0 paradigm. In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling (APS) systems, particularly under finite-capacity constraints. Traditional scheduling models often overlook real-time resource limitations, leading to inefficiencies in complex and dynamic production environments. AI, with its capabilities in data fusion, pattern recognition, and adaptive learning, enables the development of intelligent, flexible scheduling solutions. The integration of metaheuristic algorithms—especially Ant Colony Optimization (ACO) and hybrid models like GA-ACO—further improves optimization performance by offering high-quality, near-optimal solutions without requiring extensive structural modeling. These AI-powered APS systems enhance scheduling accuracy, reduce lead times, improve resource utilization, and enable the proactive identification of production bottlenecks. Especially relevant in high-variability sectors like fashion, these approaches support Industry 5.0 goals by enabling agile, sustainable, and human-centered manufacturing systems. The findings have been highlighted in a structured framework for AI-based APS systems supported by metaheuristics that compares the Industry 4.0 and Industry 5.0 perspectives. The study offers valuable implications for both academia and industry: academics can gain a synthesized understanding of emerging trends, while practitioners are provided with actionable insights for deploying intelligent planning systems that align with sustainability goals and operational efficiency in modern supply chains.
Advanced Planning Systems in Production Planning Control: An Ethical and Sustainable Perspective in Fashion Sector
Fani V.
2025-01-01
Abstract
Featured Application: This research enables AI-driven APS systems in manufacturing industries, especially fashion, enhancing real-time scheduling, optimizing resource use, and aligning production with dynamic market demands. It supports sustainable, agile manufacturing aligned with the Industry 5.0 paradigm. In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling (APS) systems, particularly under finite-capacity constraints. Traditional scheduling models often overlook real-time resource limitations, leading to inefficiencies in complex and dynamic production environments. AI, with its capabilities in data fusion, pattern recognition, and adaptive learning, enables the development of intelligent, flexible scheduling solutions. The integration of metaheuristic algorithms—especially Ant Colony Optimization (ACO) and hybrid models like GA-ACO—further improves optimization performance by offering high-quality, near-optimal solutions without requiring extensive structural modeling. These AI-powered APS systems enhance scheduling accuracy, reduce lead times, improve resource utilization, and enable the proactive identification of production bottlenecks. Especially relevant in high-variability sectors like fashion, these approaches support Industry 5.0 goals by enabling agile, sustainable, and human-centered manufacturing systems. The findings have been highlighted in a structured framework for AI-based APS systems supported by metaheuristics that compares the Industry 4.0 and Industry 5.0 perspectives. The study offers valuable implications for both academia and industry: academics can gain a synthesized understanding of emerging trends, while practitioners are provided with actionable insights for deploying intelligent planning systems that align with sustainability goals and operational efficiency in modern supply chains.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

