Emergency departments worldwide face challenges in managing fluctuating patient demand, which is often inadequately addressed by traditional forecasting methods due to the inherent nonlinearities of data. The purpose of this study is to propose a short-term prediction model for daily attendance in a private emergency healthcare unit in southern Brazil. The study employed seven years of historical data to compare the performance of ARIMA, Artificial Neural Networks (ANNs), and the chaotic logistic map model to forecast next-day arrivals in two specialties, general clinic and pediatric. The errors for the general practitioner and the pediatricians of the ARIMA, ANN, and logistic map models were, respectively, [0.31%, 2.54%, 2.17%] and [32.72%, 10.11%, 7.85%], measured by MAPE (mean absolute percentage error). The logistic map ranked second and first place, respectively, providing acceptable results in both cases. The main innovation is the successful application of a chaotic model, specifically the logistic map, exclusively for one-day prediction variables in the management of health and medical services. In particular, for the pediatrician, a most irregular time series, the logistic map provided the better outcome. For professionals, the study offers an accurate tool for optimizing the allocation of human and material resources and supporting daily strategic decisions. For scholars, it opens research avenues, addressing a gap in the body of knowledge on chaotic models that have not yet been extensively explored in healthcare service demand one-day forecasting.

Short-Term Prediction in an Emergency Healthcare Unit: Comparison Between ARIMA, ANN, and Logistic Map Models

Fani V.;
2025-01-01

Abstract

Emergency departments worldwide face challenges in managing fluctuating patient demand, which is often inadequately addressed by traditional forecasting methods due to the inherent nonlinearities of data. The purpose of this study is to propose a short-term prediction model for daily attendance in a private emergency healthcare unit in southern Brazil. The study employed seven years of historical data to compare the performance of ARIMA, Artificial Neural Networks (ANNs), and the chaotic logistic map model to forecast next-day arrivals in two specialties, general clinic and pediatric. The errors for the general practitioner and the pediatricians of the ARIMA, ANN, and logistic map models were, respectively, [0.31%, 2.54%, 2.17%] and [32.72%, 10.11%, 7.85%], measured by MAPE (mean absolute percentage error). The logistic map ranked second and first place, respectively, providing acceptable results in both cases. The main innovation is the successful application of a chaotic model, specifically the logistic map, exclusively for one-day prediction variables in the management of health and medical services. In particular, for the pediatrician, a most irregular time series, the logistic map provided the better outcome. For professionals, the study offers an accurate tool for optimizing the allocation of human and material resources and supporting daily strategic decisions. For scholars, it opens research avenues, addressing a gap in the body of knowledge on chaotic models that have not yet been extensively explored in healthcare service demand one-day forecasting.
2025
ARIMA
Artificial Neural Networks
chaotic models
demand forecasting
emergency department
healthcare
logistic map
short-term prediction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/35230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact