The use of agricultural tractors is a major concern in agriculture safety due to the high level of risk of loss of stability combined with the frequent absence of passive safety devices such as rollover protective structures (ROPSs). Indeed, although in most cases the ROPS is installed, when working in vineyards, orchards, or in other cases of limited crop height, the tractor is usually equipped with a foldable ROPS (FROPS), which is often misused because the effort needed for raising/lowering is excessive and the locking procedure is time-consuming. Thus, the goal of this research is to investigate the problem from the ergonomics point of view, developing a support system capable of facilitating FROPS operations. The research outcome consists of the development of a retrofitted full assistance system (FAS) for lowering/raising the FROPS by means of electric actuators. Additionally, an automatic locking device (ALD) was also developed to safely and automatically lock the FROPS. Both the FAS and ALD systems were implemented following a reverse-engineering approach, while their final validation was performed by means of a real prototype tested in a laboratory. The results achieved can contribute to expanding knowledge on human-centered research to improve safety in agriculture and thus social issues of sustainable agricultural systems.
A Full Assistance System (FAS) for the Safe Use of the Tractor's Foldable Rollover Protective Structure (FROPS)
Fargnoli M
2023-01-01
Abstract
The use of agricultural tractors is a major concern in agriculture safety due to the high level of risk of loss of stability combined with the frequent absence of passive safety devices such as rollover protective structures (ROPSs). Indeed, although in most cases the ROPS is installed, when working in vineyards, orchards, or in other cases of limited crop height, the tractor is usually equipped with a foldable ROPS (FROPS), which is often misused because the effort needed for raising/lowering is excessive and the locking procedure is time-consuming. Thus, the goal of this research is to investigate the problem from the ergonomics point of view, developing a support system capable of facilitating FROPS operations. The research outcome consists of the development of a retrofitted full assistance system (FAS) for lowering/raising the FROPS by means of electric actuators. Additionally, an automatic locking device (ALD) was also developed to safely and automatically lock the FROPS. Both the FAS and ALD systems were implemented following a reverse-engineering approach, while their final validation was performed by means of a real prototype tested in a laboratory. The results achieved can contribute to expanding knowledge on human-centered research to improve safety in agriculture and thus social issues of sustainable agricultural systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.