The materials commonly used to fabricate thermoelectric devices are tellurium, lead, and germanium. These materials ensure the best thermoelectric performance, but exhibit drawbacks in terms of availability, sustainability, cost, and manufacturing complexity. Moreover, they do not guarantee a safe and cheap implementation in wearable thermoelectric applications. Here, p-Type and n-type flexible thermoelectric textiles are produced with sustainable and low-cost materials through green and scalable processes. Cotton is functionalized with inks made with biopolyester and carbon nanomaterials. Depending on the nanofiller, i.e., graphene nanoplatelets, carbon nanotubes, or carbon nanofibers, positive or negative Seebeck coefficient values are obtained, resulting in a remarkable electrical conductivity value of 55 S cm(-1) using carbon nanotubes. The best bending and washing stability are registered for the carbon nanofiber-based biocomposites, which increase their electrical resistance by 5 times after repeated bending cycles and only by 30% after washing. Finally, in-plane flexible thermoelectric generators coupling the best p- and n-type materials are fabricated and analysed, resulting in an output voltage of approximate to 1.65 mV and a maximum output power of approximate to 1.0 nW by connecting only 2 p/n thermocouples at a temperature difference of 70 degrees C.

Green Biocomposites for Thermoelectric Wearable Applications

Cataldi P;
2020-01-01

Abstract

The materials commonly used to fabricate thermoelectric devices are tellurium, lead, and germanium. These materials ensure the best thermoelectric performance, but exhibit drawbacks in terms of availability, sustainability, cost, and manufacturing complexity. Moreover, they do not guarantee a safe and cheap implementation in wearable thermoelectric applications. Here, p-Type and n-type flexible thermoelectric textiles are produced with sustainable and low-cost materials through green and scalable processes. Cotton is functionalized with inks made with biopolyester and carbon nanomaterials. Depending on the nanofiller, i.e., graphene nanoplatelets, carbon nanotubes, or carbon nanofibers, positive or negative Seebeck coefficient values are obtained, resulting in a remarkable electrical conductivity value of 55 S cm(-1) using carbon nanotubes. The best bending and washing stability are registered for the carbon nanofiber-based biocomposites, which increase their electrical resistance by 5 times after repeated bending cycles and only by 30% after washing. Finally, in-plane flexible thermoelectric generators coupling the best p- and n-type materials are fabricated and analysed, resulting in an output voltage of approximate to 1.65 mV and a maximum output power of approximate to 1.0 nW by connecting only 2 p/n thermocouples at a temperature difference of 70 degrees C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/28525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact