The reduction of nitrogen oxides (NOx), critical pollutants from stationary to mobile sources, mainly relies on the selective catalytic reduction (NH3-SCR) method, employing ammonia to reduce NOx into nitrogen and water. However, conventional catalysts, while effective, pose both environmental and operational challenges. This study investigates ceria-zirconia-supported molybdenum-based catalysts, exploring the effects of zirconium doping and different catalyst synthesis techniques, i.e., co-precipitation and impregnation. The catalytic performance of the differently prepared samples was significantly influenced by the molybdenum incorporation method and the zirconium content within the ceria-zirconia support. Co-precipitation at higher temperatures resulted in catalysts with better structural attributes but slightly lower catalytic activity compared to those prepared via impregnation. Optimal NOx reduction (close to 100%) was observed at a 15 mol% zirconium doping level when using the impregnation method.

Compositional and Fabrication Cycle Optimization of Ceria-Zirconia-Supported Mo-Based Catalysts for NH3-SCR NOx Reduction

Spiridigliozzi, Luca;
2024-01-01

Abstract

The reduction of nitrogen oxides (NOx), critical pollutants from stationary to mobile sources, mainly relies on the selective catalytic reduction (NH3-SCR) method, employing ammonia to reduce NOx into nitrogen and water. However, conventional catalysts, while effective, pose both environmental and operational challenges. This study investigates ceria-zirconia-supported molybdenum-based catalysts, exploring the effects of zirconium doping and different catalyst synthesis techniques, i.e., co-precipitation and impregnation. The catalytic performance of the differently prepared samples was significantly influenced by the molybdenum incorporation method and the zirconium content within the ceria-zirconia support. Co-precipitation at higher temperatures resulted in catalysts with better structural attributes but slightly lower catalytic activity compared to those prepared via impregnation. Optimal NOx reduction (close to 100%) was observed at a 15 mol% zirconium doping level when using the impregnation method.
2024
NH3-SCR
NOx reduction
Ce-Zr-Mo catalysts
molybdenum oxide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/26919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact