In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper shows that such an approach offers the opportunity to cope with some practical implementation problems: in particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory performance results even in the presence of several hundreds of Agents.

Multi-agent quality of experience control

RICCIARDI CELSI, LORENZO;
2017-01-01

Abstract

In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper shows that such an approach offers the opportunity to cope with some practical implementation problems: in particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory performance results even in the presence of several hundreds of Agents.
2017
Future internet
multi-agent reinforcement learning
quality of experience
quality of service
Control and Systems Engineering
Computer Science Applications1707 Computer Vision and Pattern Recognition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/23809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact