Context facilitates the recognition of forthcoming actions by pointing to which intention is likely to drive them. This intention is thought to be estimated in a ventral pathway linking MTG with frontal regions and to further impact on the implementation of sensory predictions within the action observation network (AON). Additionally, when conflicting intentions are estimated from context, the DLPFC may bias action selection. However, direct evidence for the contribution of these areas to context-embedded action representations in the AON is still lacking. Here, we used a perturb-and-measure TMS-approach to disrupt neural activity, separately in MTG and DLPFC and subsequently measure cortico-spinal excitability while observing actions embedded in congruent, incongruent or ambiguous contexts. Context congruency was manipulated in terms of compatibility between observed kinematics and the action goal suggested by the ensemble of objects depicted in the environment. In the control session (vertex), we found an early facilitation and later inhibition for kinematics embedded in congruent and incongruent contexts, respectively. MTG stimulation altered the differential modulation of M1 response to congruent vs. incongruent contexts, suggesting this area specifies prior representations about appropriate object graspability. Interestingly, all effects were abolished after DLPFC stimulation highlighting its critical role in broader contextual modulation of the AON activity.

Contextualizing action observation in the predictive brain: Causal contributions of prefrontal and middle temporal areas

Urgesi, Cosimo
2018-01-01

Abstract

Context facilitates the recognition of forthcoming actions by pointing to which intention is likely to drive them. This intention is thought to be estimated in a ventral pathway linking MTG with frontal regions and to further impact on the implementation of sensory predictions within the action observation network (AON). Additionally, when conflicting intentions are estimated from context, the DLPFC may bias action selection. However, direct evidence for the contribution of these areas to context-embedded action representations in the AON is still lacking. Here, we used a perturb-and-measure TMS-approach to disrupt neural activity, separately in MTG and DLPFC and subsequently measure cortico-spinal excitability while observing actions embedded in congruent, incongruent or ambiguous contexts. Context congruency was manipulated in terms of compatibility between observed kinematics and the action goal suggested by the ensemble of objects depicted in the environment. In the control session (vertex), we found an early facilitation and later inhibition for kinematics embedded in congruent and incongruent contexts, respectively. MTG stimulation altered the differential modulation of M1 response to congruent vs. incongruent contexts, suggesting this area specifies prior representations about appropriate object graspability. Interestingly, all effects were abolished after DLPFC stimulation highlighting its critical role in broader contextual modulation of the AON activity.
2018
Action prediction
Context
Dorsolateral prefrontal cortex
Middle temporal gyrus
Transcranial magnetic stimulation
Adult
Anticipation
Genetic
Biomechanical Phenomena
Electromyography
Evoked Potentials
Motor
Female
Humans
Male
Motor Activity
Nerve Net
Prefrontal Cortex
Temporal Lobe
Transcranial Magnetic Stimulation
Visual Perception
Young Adult
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/22902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
social impact