The fourth industrial revolution is characterised by the increased use of digital tools, allowing for the virtual representation of a real production environment at different levels, from the entire production plant to a single machine or a specific process or operation. In this framework, Digital Factory technologies, based on the employment of digital modelling and simulation tools, can be used for short-term analysis and validation of production control strategies or for medium term production planning or production system design/redesign. In this research work, a Digital Factory methodology is proposed to support the enhancement of an existing manufacturing cell for the fabrication of aircraft engine turbine vanes via robotic automation of its deburring station. To configure and verify the correct layout of the upgraded manufacturing cell with the aim to increase its performance in terms of resource utilization and throughput time, 3D Motion Simulation and Discrete Event Simulation are jointly employed for the modeling and simulation of different cell settings for proper layout configuration, safe motion planning and resource utilization improvement. Validation of the simulation model is carried out by collecting actual data from the physical reconfigured manufacturing cell and comparing these data to the model forecast with the aim to adapt the digital model accordingly to closely represent the physical manufacturing system.

Digital factory technologies for robotic automation and enhanced manufacturing cell design

Caggiano, Alessandra;
2018-01-01

Abstract

The fourth industrial revolution is characterised by the increased use of digital tools, allowing for the virtual representation of a real production environment at different levels, from the entire production plant to a single machine or a specific process or operation. In this framework, Digital Factory technologies, based on the employment of digital modelling and simulation tools, can be used for short-term analysis and validation of production control strategies or for medium term production planning or production system design/redesign. In this research work, a Digital Factory methodology is proposed to support the enhancement of an existing manufacturing cell for the fabrication of aircraft engine turbine vanes via robotic automation of its deburring station. To configure and verify the correct layout of the upgraded manufacturing cell with the aim to increase its performance in terms of resource utilization and throughput time, 3D Motion Simulation and Discrete Event Simulation are jointly employed for the modeling and simulation of different cell settings for proper layout configuration, safe motion planning and resource utilization improvement. Validation of the simulation model is carried out by collecting actual data from the physical reconfigured manufacturing cell and comparing these data to the model forecast with the aim to adapt the digital model accordingly to closely represent the physical manufacturing system.
2018
Manufacturing cell
industry 4.0
digital factory
discrete event simulation
3D motion simulation
industrial robot
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/13183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact