Nowadays, artificial intelligence (AI) has become a crucial Key Enabling Technology with extensive application in diverse industrial sectors. Recently, considerable focus has been directed towards utilizing AI for the development of optimal control in industrial processes. In particular, reinforcement learning (RL) techniques have made significant advancements, enabling their application to data-driven problem-solving for the control of complex systems. Since industrial manufacturing processes can be treated as MIMO non-linear systems, RL can be used to develop complex data-driven intelligent decision-making or control systems. In this work, the workflow for developing a RL application for industrial manufacturing processes, including reward function setup, development of reduced order models and control policy construction, is addressed, and a new process-based reward function is proposed. To showcase the proposed approach, a case study is developed with reference to a wire arc additive manufacturing (WAAM) process. Based on experimental tests, a Reduced Order Model of the system is obtained and a Deep Deterministic Policy Gradient Controller is trained with aim to produce a simple geometry. Particular attention is given to the sim-to-real process by developing a WAAM simulator which allows to simulate the process in a realistic environment and to generate the code to be deployed on the motion platform controller.
Optimal data-driven control of manufacturing processes using reinforcement learning: an application to wire arc additive manufacturing
Caggiano, Alessandra;
2024-01-01
Abstract
Nowadays, artificial intelligence (AI) has become a crucial Key Enabling Technology with extensive application in diverse industrial sectors. Recently, considerable focus has been directed towards utilizing AI for the development of optimal control in industrial processes. In particular, reinforcement learning (RL) techniques have made significant advancements, enabling their application to data-driven problem-solving for the control of complex systems. Since industrial manufacturing processes can be treated as MIMO non-linear systems, RL can be used to develop complex data-driven intelligent decision-making or control systems. In this work, the workflow for developing a RL application for industrial manufacturing processes, including reward function setup, development of reduced order models and control policy construction, is addressed, and a new process-based reward function is proposed. To showcase the proposed approach, a case study is developed with reference to a wire arc additive manufacturing (WAAM) process. Based on experimental tests, a Reduced Order Model of the system is obtained and a Deep Deterministic Policy Gradient Controller is trained with aim to produce a simple geometry. Particular attention is given to the sim-to-real process by developing a WAAM simulator which allows to simulate the process in a realistic environment and to generate the code to be deployed on the motion platform controller.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.