Precision agriculture has been increasingly recognized for its potential ability to improve agricultural productivity, reduce production cost, and minimize damage to the environment. In this work, the current stage of our research in developing a mobile platform equipped with different sensors for orchard monitoring and sensing is presented. In particular, the mobile platform is conceived to monitor and assess both the geometric and volumetric conditions as well as the health state of the canopy. To do so, different sensors have been integrated and effective data-processing algorithms implemented for a reliable crop monitoring. Experimental tests have been performed allowing to obtain both a precise volume reconstruction of several plants and an NDVI mapping suitable for vegetation state evaluations.
A tracked mobile robotic lab for monitoring the plants volume and health
D'Auria, D;
2016-01-01
Abstract
Precision agriculture has been increasingly recognized for its potential ability to improve agricultural productivity, reduce production cost, and minimize damage to the environment. In this work, the current stage of our research in developing a mobile platform equipped with different sensors for orchard monitoring and sensing is presented. In particular, the mobile platform is conceived to monitor and assess both the geometric and volumetric conditions as well as the health state of the canopy. To do so, different sensors have been integrated and effective data-processing algorithms implemented for a reliable crop monitoring. Experimental tests have been performed allowing to obtain both a precise volume reconstruction of several plants and an NDVI mapping suitable for vegetation state evaluations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.