We propose a novel approach to human action recognition, with motion capture data (MoCap), based on grouping sub-body parts. By representing configurations of actions as manifolds, joint positions are mapped on a subspace via principal geodesic analysis. The reduced space is still highly informative and allows for classification based on a non-parametric Bayesian approach, generating behaviors for each sub-body part. Having partitioned the set of joints, poses relative to a sub-body part are exchangeable, given a specified prior and can elicit, in principle, infinite behaviors. The generation of these behaviors is specified by a Dirichlet process mixture. We show with several experiments that the recognition gives very promising results, outperforming methods requiring temporal alignment.
Bayesian non-parametric inference for manifold based MoCap representation
NTOUSKOS, VALSAMIS;
2015-01-01
Abstract
We propose a novel approach to human action recognition, with motion capture data (MoCap), based on grouping sub-body parts. By representing configurations of actions as manifolds, joint positions are mapped on a subspace via principal geodesic analysis. The reduced space is still highly informative and allows for classification based on a non-parametric Bayesian approach, generating behaviors for each sub-body part. Having partitioned the set of joints, poses relative to a sub-body part are exchangeable, given a specified prior and can elicit, in principle, infinite behaviors. The generation of these behaviors is specified by a Dirichlet process mixture. We show with several experiments that the recognition gives very promising results, outperforming methods requiring temporal alignment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.