We present a novel framework for the automatic discovery and recognition of human motion primitives from motion capture data. Human motion primitives are discovered by optimizing the 'motion flux', a quantity which depends on the motion of a group of skeletal joints. Models of each primitive category are computed via non-parametric Bayes methods and recognition is performed based on their geometric properties. A normalization of the primitives is proposed in order to make them invariant with respect to anatomical variations and data sampling rate. Using our framework we build a publicly available dataset of human motion primitives based on motion capture sequences taken from well-known datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields related to Robotics including human inspired motion generation, learning by demonstration, and intuitive human-robot interaction.

Human motion primitive discovery and recognition

Valsamis Ntouskos;
2017-01-01

Abstract

We present a novel framework for the automatic discovery and recognition of human motion primitives from motion capture data. Human motion primitives are discovered by optimizing the 'motion flux', a quantity which depends on the motion of a group of skeletal joints. Models of each primitive category are computed via non-parametric Bayes methods and recognition is performed based on their geometric properties. A normalization of the primitives is proposed in order to make them invariant with respect to anatomical variations and data sampling rate. Using our framework we build a publicly available dataset of human motion primitives based on motion capture sequences taken from well-known datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields related to Robotics including human inspired motion generation, learning by demonstration, and intuitive human-robot interaction.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12606/12109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact